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SUMMARY

An enalysis is presented for the deformation of a doubly curved
thin plate under edge loads or surface loads for small deflections.
This problem is approached from thin-shell theory so that the plate is
to form part of a shell of revolution. The method developed is particu-
larly useful for a plate whose radius of curvature in one direction is
large compared with its length and width dimensions. The solution con-~
s8igts of an expansion about a parameter which depends on this fact.

An analytical solution is presented completely for a plate with an
arbitrary meridian curve of small curvature and loaded by normal edge
loads on one pair of opposite edges. Numerical calculations for the
deflection and moment distribytion are presented for a particular
meridien curve. For the meridian curve chosen for the numerical example,
part of the surface had a negative Gaussian curvature. Results show that
the deflections and bending moment are largest at the part of the plate
with negative Gaussian curvature.

The method 1s developed to the point that it may be applied readily
to other problems of the deformations of doubly curved thin plates under
edge or surfsce loads. The theory, however, is limited to small deflec-
tions of the plate or shell considered.

ANTRODUCTION

This report is concerned with the behavior of a doubly curved thin
plate under edge loads or surface loads. This problem is considered in
the following way. The doubly curved plate is to form a part of a shell
of revolution bounded by two meridians and two parallels. The meridian
curve is assumed to have a radius of curvature much lsrger than the
radius of curvature of a parallel. This situation is clearly presented in
most airplane fuselage panels. The introduction of a small parameter
dependent on this fact ‘allows the equations for equilibrium of the shell
of revolution to reduce to ones with constant coefficlents. The solution
of this sequence of problems then leads to a complete sclution of the
problem. It may be noted that the method so developed is equally valid,
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for analysis of the deformation of a shell 6f revolution with a meridian
curve of small curvature and loaded in any marner whatsoever.

The thin-shell equations valid for small deformation of an arbitrary
shell of revolution are first presented. These, in general, lead to a
set of differential equations with variable_coefficlents. The pertur-
bation method is then applied to reduce theSe equations to ones with
constant coefficients. An anglytlic solution 1s presented completely for
a plate with arbitrary meridian of small curvature loaded by normal edge
loads on -one pair of opposite edges and stress free on the other pair.

In addition, all edges are free from shearing stresses. For this type of
condition two infinite femilies of algebraic equations are obtained which
are solved by retaining a finite number. Finally, numerical calculations
for the deflection and moment distributlon are glven for a particular
meridian curve.

The author is indebted to Dr. D. J. Peery, Head of the Department
of Aeronautical Engineering, for his work in the formulation of the
proposal for this project and to Dr. J. A. Sauer, head of the Department
of Engineering Mechanics, for his understanding cooperation. The author
1s also grateful to Miss A. Koo who checked the major portion of the ana-
lyticael work and to Mr. T. Khammash who performed the numerical
calculations.

This work was conducted in the Department of Aeronautical Engineering
of The Pennsylvania State College under the sponsorship and with the
financial assistance of the National Advisory Committee for Aeronsautics.

SYMBOLS
A = Gh3/12
a constant defined by equation (10)
B = Gh

¢ - m/(1 - +2)

D = mndf12(1 - V) - | ~
E - Young'!s modulus
F(O), F(l), ... stress functions -

f(z) equation of meridian curve
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G. _

G, H, X

h

1, 6,

Mg, Mg, Mgg
Ne, Ng, Neg
P

Rgs Re

u, v, W

X, ¥, 2
a2, re

an = nx/2
Py = mn/2
Ym = mib/2
Sn = nﬁl/gb
€9 €t 79§
4

e, &

Kgs Kgs T

Tl

shear modulus

known functions given from solution of each
approximation

thickness of shell
define length and width of plate

moment resultants defined by equations (3)
force resultants defined by equations (3)
surface loed in direction normal to middle surface

principal radii of curvature of middle surface of
shell

displacements in 6, &, end ¢ directions,
respectively

rectangular Cartesian coordinates

fundsmental magnitudes of first order of middle
surface

extensional strains and shear strain given by
equations (8)

coordinate noxrmal to middle surface
curvilinear coordinstes on middle surface of shell

change-of-curvature functions given by equations (8)

small parameter defined by equation (10)
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v Poieson's ratio

v, = an/2b

Tegs Tt shear stresses

ng, Too normal stresses

v function defined by equations (22)
Q "equivalent" potential function

BENDING OF SHELLS OF REVOLUTION

The differentlial equations governing the small deflection of shells
of revolution are considered herein. In this section the equations
pertinent to the later investigations are outlined.

Coordinate System on Shell

Consider a shell of revolution located as shown in figure 1; in
addition to the x, y, and 2z Cartesian coordinate system a set of
orthogonal curvilinear coordinates 6, &, and '{ is chosen on the
middle surface of the shell such that the & and E& 1lines are lines
of curvature of the middle surface and { 1is the distance normal to
the middle surface. In addition, the 6 and ¢ 1lines are the parallels
and meridians of the middle surface (for s shell of revolution). Note
that £ 1is s parameter along the meridian plane and 6 1is the polar
angle measured from the xz-plane. The elelient of arc length wlll be:

> >
ds = a2(l + f{%> at® + r2<l + %) a0® + at? (1)

2 _ (az\° . (dr)}® -
where af = (d‘g‘) + (EE) and R; and R, are the principal radil of
curvature of the middle surface. It is noted that instead of § one can
use 2z as the independent variable. Then the element of arc length in

the & direction becomes

@ dt =\[1 + (g—;‘)z az (2)

One also notes that r = r(z) is the equation of the meridian curve.
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The sign convention as given, for example, by Sokolnikoff and
Specht (reference 1) is used. Thus if T4 is the stress tensor, then

the subscript i indicates direction of normal to plane under consider-
ation and J, the direction of the component of stress. Tensile stresses
and compressive stresses are positive and negative, respectively. Shear
stresses on a particular plane are positive if the normal forces are
pogitive on that plane and if they are acting in the direction of posi-
tive coordinate axes; otherwise, they are negative.

The stress resultants and moments, as defined later, have the fol-
lowing sign convention (see fig. 2). The resultant bending moments are
positive if they cause positive stress on the positive side ({) of the
middle surface. Resultant forces have the same sign convention as the
stresses.

Assumptions in Analysis

The assumptions inherent in this analysis are the usual ones for

thin-shell theory. They are amply presented in reference 2. Summa-
rizing, they are:

(1) Materisl is isotropic and follows Hooke's law

(2) Thickness of shell is small compared with smallest radius of
curvature of middle surface

(3) Displacements are small compared with thickness

(k) Straight lines normal to undeformed middle surface remain
straight and normal to deformed middle surface

In addition, two other assumptions are made here. These are:
First, the effect of transverse shear in the resultant force equations
is small and can be neglected and, secéndly, the effect of the displace-
ments tangential to the middle surface of the shell in the changes of
curvature is of higher order than that of the displacement normal to

the surface. These assumptions are discussed more fully later in the
text.

Differential Equations of Equilibrium

Force and moment resultants.- The stress resultants and moments are
defined on the coordinate curves on the middle surface of the shell.
They are given in units of force or moment per unit length of the middle
surface. Thus the followlng definitions are made:
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~

> (3)

with the integrals evaluated between the limits -h/2 to h/2.

The differential equations of equilibrium for the force and moment
resultants may be obtained from physical considerations (e.g., refer- A
ence 2) or by integration across the thickness of the shell of the
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differential equations for the stresses (reference 3).
differential equations for the stress resultants are:

or

aa—e(aNe) * 'aag(rNge) +SE No& * R 90 = 0

) 5] o -
E(rNg) + a_e(aNeé) -SE N + % Q =0

iIQ - & N, -

where

h/2
:
- h/2

ooy

%E Ne + arpg + g%(ag ) =0

Thus the

(ka)

< (4b)

(ke)

In these equations it has been stipulated that there are no tangential
forces applied to the middle surface of the shell and no body forces

are presented.

a(“Me) B(ngs) or
Y + St —mQ,e+a—§-Me.§=0
ofrMe) 3
S+ S{oor) - meay - g - 0
M

The equations for moment equilibrium are

(52)

(5b)

(5¢)
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Equation (5c) is not obtained from integration of the stress-
equilibrium equation in the
tion of equality of cross shears

£ direction.

Teg = Tge

It is implied by the rela-

that is, if equation (6) is rewritten in the form

1 1 g
T§6<l + %) =-—R—5 g’reg(l + _R%) + Eg che <l + E;)

and integrated across the thickness of the sghell, equation (5¢c) results.

e )-

(6)

Relations between force and moment resultants and strains of middle

surface.~- The relations between the stress resultants and the straine of
the middle surface are obtained from stress-strain relations and defi-

nitions (3) utilizing the assumption that <l +

in equations (3).

3

Gh

wh A = L=
ere TR

(See references 3, L4, and 5.)

Neg = Nogg = Brgg

Mg = D(KQ + VKE)
Mg = D(kg + Vig)
Mg = Mgy = At

= C(e§ + Vee)

= C(eg + Veg)

R

Rg

-L)Nl and (1+-R§E)21

These relations are:

(7)
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The extensional strains and changes of curvature may be given in
terms of the displacement of an arbitrary point in the middle surface of
the shell. Let u, v, and w Dbe the components of the displacement of
a point on the middle surface where u is along the tangent to a parallel
circle, v, along the tangent to the meridian curve, and w, along the
normal to the surface. Thus the extensional strains and changes of curva-
ture of the middle surface are

-
_19 13
€g = ?.Sg-+ ;a-gg-v + ﬁg—
_ 19
‘¢ T a g% * ﬁé
__u d 19 19
Yot “"ar St tESE T T o0
> (8)
e _1fidu_ 1% +.l-_a_1‘l__l3_w)
e r\Rg 38 T ae2 ar Rg a &
K =£il-l‘..al
€ aJ3E\Rg a of
T=_1_.a_x;1_;ﬂ)+ia_i_;aw)+;il_;@
ar 3tWg ~ T 00/ ~ @ 3EWRg ~ T o9/ T 36\, ~ G 3E)

In the latter part of this report the above set of equations will
be applied to doubly curved plates which have been "cut" from a nearly
circular cylindrical shell. Thus the principal radius of curvature Rg

will be quite large. Moreover, the assumption (h/R) <<1 (R is the
smaller of Rg and Rg) implies that in these problems u and v are
second order small in Ky, Kg, and 7. Finally, if terms of higher

order than 13 in the values of kg, K¢ and T are rejected one

obtains in place of the last three relations in equations (8) the
following equations:
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2 )
Ky =it 0¥, 1 Orodw
o 2 36 oPr JF
=19 (1w
"t = aa§<a a§> e (9)
T=A§1:8_w_;i<;_ax _;g(;a_w)
ar® 3t 36 « E\T 36/ T do\x OF
./

One notes thet in equation (5c¢) the terms Mge/Rg ‘and MQE/RQ are of

the order of h%/Rg and h%/Re- and can be rejected, thus leading to

Ngg = Ngg

agreeing with equations (7). A further simplification can be made by
rejecting the transverse shears Qg and Qg in the force equations

since they are of the order of h%/Re and h%/Rg, regpectively, while
the remainder of the terms are at most of the order of Q/Rg and h/Rg.

ANATLYSTS OF CURVED PLATES

In the following sections the equations will be applied to the
bending of doubly curved plates which form a part of a shell of revo-
lution. The equations as given above are, in general, intractable to
the problem at hand. However, in the application, for example, to
curved panels of an airplane fuselage the radius of curvature of the
meridian curve is many times the length and width of the panel. Hence a
solution to the problem can be obtained by an expansion in terms of a
parameter which will be small when the radius of curvature of the meridian
curve is large. Then the solution will appear, for example, in w asB

w = wl0) 4 wel1) ugw(E) + ..

where p 1s the parameter concerned.
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To this purpose the equation of the meridian curve 1s represented
by the relation '

r =a + pf(z) (10)

where a 1s a constant, u 1is the small parameter dependent on the
maximum deviation of the meridian curve from the straight line r = a,
and f(z) is the equation of the meridian curve.

It is more convenient in the following sections to use the coordi-

nate 2z instead of E. Thuse one replaces & by 'z in all equations
above.

The radil of curvature Rg and Ry are given by the relations

1 __ 1 h
o rE. + (dr/<1z)2]l/2
> (11)
1 (42r/222)
Rt E_ + (d:c-,/élz_)e:l?’/2 J

In accordance with the first paragraph of this section all dependent
variables will be expanded in power series of the parameter p. Then
solutions of the different approximations are obtained. For small values

of the parameter W, probably two epproximations are sufficient to lead
to a complete solution of the problem.

The expansions required are:

€g = ee(o) + uee(l) + u2€9(2) +

(12)
(o) | . (1)

;) + HKg

(2)

2
+ kg + . .

&
[4>]
Il

u = u(o) o+ lJ.'Ll(l)' + p_zu_(e) + . . . (13)
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N = 000 & gt 4 B3 (1%)

MQ = Me(o) + |JM9(1) + [J.2M6(2) T e o o (15)

and similer expansions are obtained for e¢,, €gg; kg, T, Ny Ngy,
MZ’ and MQZ‘

The expansions of the various terms have been summarized in appen-
dixes A and B. ‘The superscripts correspond to the order of the
approximation. )

Equations for First Approximation

The first approximation yields essentially the same equations as
that of a circula? cylinder, as would be expect d) One can obtain two

simultaneous equations for g stress function F . and the normel displace-

ment w(o) from the pertinent equations in appendix B as follows: ILet

(o) BEF(O) ;’\
i~ -
p(0) o L %) | (16)
2 a® 302

where the superscript corresponds to the first approximstion. Then it
is seen that equations (Bl3) for force equilibrium are automatically

satisfied. Moreover, a compatibility equatlon can be constructed from
the strains (equation (B7)) and is
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The resultant force and strain relations give

€Z(O) =%E;Z(0) - vNQ(O)] h

PAC)H ElE_ Nglo) - VNZ(O)] > (18)
N (o)
726(0) = .Lfla_

The substitution of equations (18) and (16) into equation (17) leads to

ohpo) _ _ B 3%(°)

28 (19)
where
L i s
oz ds dz ds
s = ab

The moment-equilibrium equation together with its relation tc the changes

in curvature (equations (B4, (B5), and (B10)) gives the second equation

for w(o)'

2
a__F_(O_) + Eg. (20)

4 (o) 1
7w ==
aD aZQ D

Equations (19) and (20) are a pair of simultaneous equations for E)

and F(O) subjected to appropriaste boundary conditions. The effect of
curvature in the 8 direction is evident from the terms multiplied by
l/a. Thus one obtains the flat-plate equations if (1/a) —> 0, that is,
coupling of the two equations disappears. It is noted thet these equa-
tions are exact for bending of a circular cylindrical shell with small
deflections. C
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Equations (19) end (20) can be combined into one equation for one
complex function (cf. Reissner, reference 5). If equation (20) is
multiplied by a constant k and added to equation (19) one obtains

first .
B(o) ., (o)] 3@ | mE (o)  xr(o)| kpg
v [% °) 4 xw O] v [}-;;-w + I ] + —

then
v4[17,(0) + i\/h—E—DW(ozl _ ﬂa@ -:%[F(O)+ i\/h_:E—Dw(OYJ + .PBC_ k (21)

if k = iVhED where i =V-1. Equation (2£7 is a differential equation

for one complex function [?(0) + thEDW(O{]' Furthermore, if one desires,

equations (19) and (20) may be reduced to one eighth-order differential
for a function V¥ such that

~
F(O) = _éz_g
dz ? (22)
wlo) _ é%-VMW\J

However, for practical calculation F(O) and w(o) may be represented by
double Fourier series and equations (19) and (20) are used directly.

Equations for Second Approximstion

The second approximation involves now the known functions of the
first approximation on the right side of each equation. Let

2 (1) 8
Ne(l) = Qggg—— + Q(6,2)

2.(1)

. Ng(l) - f? aazé . + (6,z) r (23)
(1) _ 1%
Vot "8 936 oz
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where the superscript corresponds to this approximation. With equa-
tions (23) force-equilibrium equations (Bl3) are satisfied if

~
d0 af . (o) (o)
— = ]2 — X + £N
38 dz 9% 2

(o) > (2k)

2 1lar . (o) .~ Nz ar . (o)
= =-.= N + f No
dz aldz z dz

—/

The relevant compatibility equation for this approximation is

8256(1)

322

326, (V)

36° 36 dz

-+
a

827z6(l) a2w(l)
2

1 1
+_— = e
a? & Jdz

+alod(e,z)  (25)

where G(O)(e,z) is a function determined by the first approximation.
With the aid of the resultant force-strain relations

-
o) = &, @ - v, )]

(1) - hLEqu(l) - )] & (26)
7z9(l) = ﬁ% Nze(l) _

and equations (23), compatibility equation (17) gives

s (27)

where H(o)(e,z) is a known function from the first approximstion. The

mament-equilibrium equation with equation (23) and the relations between
resultant moment and change of curvature lead to
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h(1) _ 1 %Y

o 2+ xe,2) (28).
. |

where K(O)(G,z) is also a known function. The solution of equetions (27)

and (28) would give the second approximation, The effect of double
curvature comes in at this stage. The method of solution follows the

ones suggested previously. It is evident that the form of the equations

for higher approximations will be similar in structure Thus for the
(n + 1)th approximation one has

2 (n) (n-1) h
vr(n) - LB égfg—— + E (6,z)
(29)
bo(n) _ 1 %M . (n-1)
W Pa 3, + K (e,z) ]

vhere H(®1) ana k(7-1) contain all of the known (n - 1)th func-
tions w®1) ana F(8-1), The functions E(©)(s,z), al0)(s,2),

and K(O)(G,z) are not given explicitly here but may be formulated
readily from the expansions given in appendixes A and B.

Solution of Specific Problem

The developed differential equations will now be applied to a
particulaer problem. The problem at hand i1s that of bending of a curved
plate with two meridlan curves and two parallel circles as boundaries.
This plate is loaded along the edges = Constant in compression
(i.e., the load is along the direction of the z-axis). The boundaries
of the plate are given by 2z = i1 and @ = t65. (See fig. 3.)

Boundary conditions.- Four boundary conditions are needed on each
edge, and with four edges there are sixteen conditions for w and F
together. -

The plate is supported at all edges and hinged at the edges so that
bending moments ere zero there. Thus,

at z=231: w=0, M, =0
(30a)
at @ = teo: w = O, Me =0
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Furthermore, for applied load at edges 2z = Constant 1t is required
that at 2z = 11

Z

eO
JF N,a d6 = Applied load (30Db)
..60

(In most cases N, = Constant and the condition becomes equal to a
constant.) In addition, it is required that the shear resultant be zero
at all edges, that is,

at z=3: Ny =0
> (30c)

- +g . =
at 8 =16_.: NZB—O

There are two more conditions needed and these are supplied at the
edges 6 = iBy. They may be formulated in either of two ways. If the

plate has stiffeners attached at the edges which have infinite bending
rigidity in the @ direction then the boundary condition at € = 16,
is

u=0 (304)

and if the stiffeners have zero bending rigidity in the 8 direction
the condition at 6 = 6o 1is ,

Ng = 0 (30e)

Of course, the actual condition would be between these two. It may be
noted that condition (26c) may be modified to have zero tangential
displacements at the edges (then Nzg # 0 at edges). With the help of
expansions (12), (13), (14), and (15) the above boundary conditions
imply the following conditions for the different approximations:
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w=0 gives W) =0 for n=o0, 1, 2,

My, =0 gives M;() =0 for n=0,1, 2

w =0 gives w(n) =0

Mg = 0 gives _Mg(n) =0 for n

Il
(@]
“
o]
-
N
-

=
I

y = Constant gives NZ(O) = Constant

=0 for n=1, 2,

If Ny = O then Ne(n) =0 for n=0,1, 2

If u=0 then ul® =0 for n=0,1, 2, ...

e =16

0

N,g = 0 glves Nze(n) =0 for n=0,1, 2, .

> (31)

Solution to first approximation.- For further application, consider-

ation is given to stress-free edges at 6 = %9, (i.e., equation (30e)).
A possible solution to equations (23) and (27) is that

W(O)E 0

(32)
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and

rlo) - m? (33)

Equations (32) and (33) satisfy all boundary conditions given above
and furthermore differential equations (19) and (20) are satisfied
(with P§ = O). The constant B 1s determined by the load at the

edges z = 1. If the loads at these edges are:

NZ = k = Constant

then : (34)
B = k/2

by equation (16). The displacement components ulo) and v(o) are given
by

wle) - —%% 8
S (35)
v(o) = éﬁ kz

Solution to second approximation.- The functions Q, H(O), and k(°)
must first be determined from the first approximation. Thus, one has

-
¥ _ g

% > (36a)
of _ _14f

oz a dz ‘J

or

o)

I

1
o5

(36Db)
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2 3
(o) (2 - V)k a&°F ¢ L F kz
1o)(o,2) - EWE L EL K (36¢)
K(o)(o,2) =L LXK (364)
= FB 3
zZ
Differential equations (27) and (28) become now
b)) _ o1 9%F(l)  x 48r :
vhe(1) - L -k (37)
Da aZE D d;e .
and
ohp(1) _ BB %) (2 - Vka?r  a3rke (38)
& 3z° a dz® az3 @

Solution of equations (37) and (38).- To satisfy the condition of
simply supported edges assume & solution for w(l) in the form

W) o i ] i Vo €08 (5 z) cos (n_at S) (39)

n=l,3... n=1,3... 2b

where b = af,. Insertion of equation (39) into equation (38) leads to

v F(l) —ZQ Ec “m mn COS HpZ COB Vp8 +

2. .3 ;
(2 - V)k & f a3 k2 | (40)
a az2  daz3 &

where up = mn/21 and VY, = nn/2b for abbreviation. The particular
solution of equation (40) is :
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[+

Fp(l) = > S Fyn cos iz cos vz + J(z) (41s)
m=1,3... n=1,3,..

where
~
2. 2
g _BE__TmP
m - a o 2\2 ‘mn
(7m * )
> (41p)
a*a(z) _ (2- vk d®r  Srke
az & 322 g3 &
~/
and
Tm = HypP
a, = Vb

A complementary solution that can satisfy the boundary conditions is

oo

(l) _kf 2
F. =5 8 + m=1§3 cos umz(Am cosh py s + C u s sinh ums) +
330..

o0

E [cos V8 (Bn cosh V,z + D,V z sinh Vnz):l (k2)
n=l’3o¢-

To recapitulate, the boundary conditions which remain to be satisfied
are, at z = 11,

N =S X2 -0 (43a)

(43p)
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2_(1)
e o (3)
Z
2 (1)
o) < S (30)

Assertion of conditions (43a) and (43c) leads, respectively, to rela-
tions between the constants of

£l
Bm cosh Tm
B, = =5, tanh &,D, (44b)
. d23(z)
where £, 1is the coefficient of the Fourier cosine expansion of —
dz
given by
1 .2
£ = Jf E—Eézl cos Hpx dz (45)
-1 dz
and
Bm = Byl
dp = Vpl

The details of this calculation are given in appendix C. The remaining
conditions, equations (U43b) and (43d), give two infinite families of
algebraic equaetions for the constants D, and Cp. They are:
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23
L 4
> lLCLnﬁm.an2
zz: o 5 sin a, sin B, cosh d,D, =
n=l,3-.. (6112 + Bme)
- sin 2
h% 7m3b2 E 9n %2 Yon - ]27,— fm tanh Tm -
n=l’ 3"1 . <7m2 + ana)
Cmbympm(A—— + sinh 7m) for m=1, 3, 5. . . (46)
cosh 7y
and
© 1%27
E m Pm sin ay sin By cosh 7,Cp =
m=l,3.. (an * Im ) .
_ i 2fylyy° sin oy sin By |
m=1,3... ﬁm(anz + 7m?)
2 (23] 2 ‘n 5 2
hEb T Pon 510 P | _ a D (—LR— + &, sinh &,
& 13 o 2\2 D\cosh B,

e (7m +dy )

for n=1, 3. .. (47)

The detasils of the above calculation are also given in appendix C. At
this point &ll boundary conditions are satisfied and it remsins to

satisfy differential equation (37). If the value of F(l)

is inserted
into equation (37), then this equation is satisfied if

L
2 o) . mo'E "m bh B anfm?
Y (7m + o ) 5 thﬁn 5 -
Da ( > ) B~ cosh 7y
Tm + %y
by P, @ L 3s.2
n ;m st = cosh 7y sin a + §212 D, zm n 7 cosh 8y sin B
(an * Tm ) (8n + By )

for sny m and n (48)
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vhere Kp, 1is the coefficient of the Fourler double cosine expansion
of the function

and is given by

2 2
f f [‘3- J(z) ng k] cos ppz cos vys ds dz (49)

The complete sclution of the problem lies in the solution of the infinite
families of algebraic equations for Cy and D, and then Wy, from

equations (44). An approximate numerical solution for Cp and D, may

be obtained as follows. It is assumed that coefficients with suffixes
greater than some fixed number can be neglected. Then 1t is verified
that increasing this number does not affect the coefflcients with small
suffixes. -

Illustrative example.- As an example thé following meridisn curve
is considered:

2 2
r=a+ ua(% - ZE) (50)
1

It is easily verified that the slope dr/dz is zero at z = Fl. Thus
the load N, =k at z =1l is normal to the edges. In addition, con-

sider a plate such that 1 = b. The sign of the constant k determines
compression or tension; that is, k <0 indicates compression and

k >0, tension. The procedure in the numerical calculations is outlined
in appendix D. The results of the calculations asre summarized in table I
and figure 4. It may be noted that all the calculations can be carried
through with the sign of k arbitrary. Thus the sign of k which
determines either compression or tension can be gssigned at the last
stage of the calculations. '

DISCUSSION OF RESULTS

The numerical results for the example are given in figure 4. It
is seen from this figure that maximum value of the deflection w
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(normal to undeformed plate surface) is not at the center of the plate.
This deflection appears to have a maximum value near the loaded edge.
This is due probably to the choice of the form of the meridian curve

which gives a negative Gaussian curveture for z > j%_l and g positive

L J. The deflections are largest at the

Geussian curvature for 2z < -—=
part of the plate with negative Gaussian curvature. The moment distri-
bution curve shows the same trend. It is noted that the actuzl values

of the deflections and moments are multiplied by the parameter . The
order of magnitude of the parameter p 1is about 0.01 to 0.02. Thus

the order of magnitude of the normal deflection w is about 0.04 to 0.08
of the thickness of the shell. This indicates that the first two approxi-
mations of most problems (i.e., u® and pl) will be sufficient to give

a complete solution.

The convergence of the approximate solution of the infinite families
of algebralic equations is quite rapid. These results are given in
teble I. A total of six coefficients was used; the dominant coefficients
were the first two, C; and Dj.

CONCLUDING REMARKS

A method has been developed for <the analysis of the deformation of
doubly curved thin plates under edge and surface loads. Only small
deflections (small compared with the thickness of the plate) are con-
sidered here. This method is particularly suited to the snalysis of a
plate with a large radius of curvature in one direction. This is clearly
the situation existing in airplane fuselages.

For the problem of a doubly curved plate in edgewise compression
two infinite families of algebraic eguations were obtained in order to
satisfy the boundary conditions that would exist in most airplane
coverings. Results were obtained by replacing these iInfinite sets by
finite ones (neglecting all coefficients beyond a certain suffix). Con-
vergence of this approximate solution of the algebraic equations was
quite rapid.

Since the order of magnitude of the parsmeter p is small (in the
hundredths) the first two approximations are usually sufficient to give
the complete solution to similar problems. Moreover, the convergence
of most expansion methods about a parameter is difficult to prove mathe-
matically., However, in most practical applications the parsmeter p will
be small and only a few terms in the expansion will suffice for the solu-
tion. Of course, the solution so obtained will indicate the number of
terms required in the expansion.
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It should be noted again that the equations are valid only for
deflections that are small compared with thé thickness of the plate or
shell considered. ' If, in the application of the method, large magnitudes
of the deflection are obtained one must resort to a nonlinear theory.

A specific example is presented which can be immediately applied
to the bending of thin plates with compound curvature for small deflec-
tions when loaded in edgewise compression or tension. The bseic equa-
tions given are equally valid for a curved plate loaded by any other
edge loads or by surface loads, but the form of the specific example
as presented will change slightly. Moreover, any shell of revolution

with & meridian of small curvature may be anaslyzed by this method.
[ ]

The Pennsylvania State College
State College, Pa., August 28, 1951
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APPENDIX A
EXPANSIONS OF TERMS IN POWERS OF PARAMETER u

To facilitate computation the following expansions are particularly
useful. All terms are expanded up to and including second powers in the
parameter p. With

r=a+ puf(z) (a1)
The following expansions can be immediately written:

2
l1-pu § + uz(i; - % f, )
i a

@

L
Rg

Differentiation with respect to z 1is iIndicated by the subscript =z.
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APPENDIX B

EXPANSIONS OF EQUATIONS

Expangions of Equations for Strains

The strains have the following expansions up to and including the
second powers of . u:

(o) (o) A
ee(o) _ é Blge _ Wa
69(1) = %’ag;l) - W(al) = fg‘ ag;o) + Iy vie) . ;i; w(o)
(2) (2) (1) oo
u'? 2 u't! £ (1 1
69(2) = % g@ —'wa - ﬁ% g@ + E% v( ) 4 i% w( ) .
f2 au(o) ffZ V(o) } (f_e_ _ .l £ 2)w(0)
a3 8 &2 22 2 °72)°8
¢ (0) _ v(o) ﬁ
2 oz
ez(l) = agil) + fzzw(o) | > (B2)
(2) (o)
62(2) = a"gvz + zz"’X l) "_l f22 Bxarzod
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(o) _aulo) 1 av(e) 8
R i i
(1) o 1@ o) | £ (o)
z8 dz a Qq8 a = 8.2 30
(2) ( > (B3)
oy _w®  1a® £ (1) (@
7Z9( ) = _g_;__ _a__g_a___ - a-Z u a2 ‘are +
T, (o) _ T22 3u(9) | £2 3y(0)
at2 Z a3 J
e (0) 1 ,azw(o) R
22 392
e (1) -1 agw(l) . 2f azw(o) _ f_z_ aw(o)
6 ? aef a3 392 a yg
’ (BL)
L (2) __1 %@ | or 3%(1)  £p 3w(1)
a® d6° g3 36° a 3z
1, £)agw(°’
a2\ a2 ¥/ 202 ) 9
o (o) _ _ lo) 7
z - 2
oz
k(1) = - 52“’(1)
) i 02" > (BS)
(2) _ 3243 1 o 32,(0) 3w (o) .
z T 32 27z o2 2fz2z
£52 3Pulo)
2 32 9
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T(O) = - g' aQW(O)
8 30 3z
A1) - 2% Ty 3(0) | r 32(0)  f, 3(0) | 32y(0)
& 3z 36 ae o8 8° 6 dz as o8 ac dz o6
(2) __2 aew(g) £ aew(l) fy aw(l) £ Bew(l) fa Bw(l) _ B6
T &3z 99 a2 3z 30 a2 00 aldz o8 | a2 30 p (26
28, 3w(0) | 152 32(0) 1 3 [au(0)p] | £ 22ulo) |
a3 26 & 36 dz a3 dz| 6 a3 dz 6
f22 32 (o) .
" 2a 3z 06 i ~J

Compatibility Equations

The following compatibility equations can be constructed from the

values of the strains given above:

2 2 2 .
d 69(0) . 1 3 ez(o) ) 1 o 729(0) _ 1 aaw(o) (57)
dz2 82 962 & 93z 96 a g2
8269(1) L L 5252(1) 1 82729(1) _ 1 32,(1) , Tz 32,(0) N
322 a2 362 & 3230 .8 3z2  a? 26° -
faz (o) , Tz 3wlo) 5 &lo) ¢ 32(0)
ac et a Jdz ¥ a® dz ¥ a dz°
Eg aQu(o) _ 31-B3u(°) + 2f,, v(o) + t, agv(o)
a2 36 dz 82 D9 dz2 - & dz . & 22 ’
T2z S0) 4 L1og 33v(o) + 1, 32y (o) (B8)
a a3 6% dz a3 26° -
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The compatibility equations for the next and succeeding approximastions
are constructed similar to equations (BT) and (BS) obtaining in each case

1 aQW(n-l)

terms as
a 3z2

and so forth where n denotes the nth approximation.

Expansion of Equations for Moment Equilibrium

The last three equilibrium equations (equations (Lc), (5a), and
(5b)) can be combined into the single equation

3% 32 (rMz0) M
e , 1 26/ . 1or 20 L 311 3
T 392 T oz o6 +raz o6 +Bza8z(rMZil *
82Mze BC"G Br) ar ar
56 0z ~ 32\ dz) " Fg ® "Ry 2 TR =0 (B9)

The expansions in powers of p of equations (B6) lead to the following
equations for each power of p:

For I.LO:

L () 3y, () ) 2, (0 By, (°)

+Ne(0)+pa=0

a2 T Hor T2 T om & (310)
For p.l:
(L) RBu, () 33, (1) 2y (1)
1 .6z Z 0z -
a  3g2 T S6 0z B dz2 T 6oz Yo * Rt
BEM (0) M (O) M (O)
- S " 2t e sl +

f -BT - fZ- az - fzzM.Q(O) - afzzNZ(o) =0 (Bll)
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For p=:

L P, A® A @

& 36° - 36 Oz 3z - 96 dz

N, (2) - afZ'ZNZ(l) i

£ BQMQ(:L) + f azMz(l) +25z

82 302 T 338
am, (1) 1 ()
efy gz + fzzMz( ) - £ gz - ;Mg
N G I
5 T B a2 2% T2 | waz

- NACA TN 2782

T 2a

ZZ +

2

aMez(l)

— 4+

a6

Expansion of Equatioms for For¢é Equilibrium

The remaining force-equilibrium equations may be expanded in a

gsimilar way and then if each factor of u°, u
zero the following equations result:

For poz
aNe(O) . aNZe(O) L
a oo oz ' g
o) g a0
oz & 36 J
For ulr
aNe(l) aNzG(l) ‘o EE:N (o) N £ aNzG(O)
Y dz ' T 27 3
ax, (1) .1 anze(l) O an, (©) )
oz a 3 a oz

1

, and L is equated to

(B13)

(BLY)
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52 T 33

For u2:

) aNg(a) aNzg(2)+ Ty (1)

£
T Y 23 M0 TaTy, 5 - °
BNZ(Q) 1 aNze(z) fz . (1) 3 (1)
1 £ ON hid
L TR - DU R

L 257 Ay

2 & d6
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APPENDIX C
EVALUATION OF CONSTANTS OF INTEGRATION

The expression for the stress function F chosen to satisfy the
differential equation for F and the boundary conditions is

o o0
F(l) = ZZ: :E: Fpn COS Hp2Z CO8 V8 + J(z) + %i g2 + i
1=1,3 n<1,3 a
00 o0
cos Wy zF;(8) + E cos Vv, 8F,(2) (c1)
n=1,3... n=1,3...
where
Fp(s) = Ay cosh pps + Cppips sinh pys
Fn(z) =B cosh V z +DVz sinh V z _

and p, = mw/2l, V, = nx/2b, and s = a8 for abbreviation. Equa-
tion (C1) satisfies differential equation (21) if

b 2 3
43(z) _(, -k df, kzdf (c2)
dzh & gz2 28 gz3
The boundary conditions which must be satisfied by F (equa-
tion Cl) are, at z = 1:
2p(1) '
W S SET LK (c38)
08 &
2_(1)
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and, at s = 1b:

w1 - )

- =0 (C3c)

N C I S

C3a
z8 3z s (€34)

Conditions (C3a) and (C3c) above lead to relations between the sets
of constants A, and C, and B, and D,. Assertion of these condi-

tions leads to

@ 2
S T(p) cos = L) (c4)
m=1,3... dz
and
> v PF,(1) cosvps =0 - (c5)
n=1,3...

Equation (C5) immediately gives
B, = -Dyd, tanh &, (c6)

where Sn = Vul.

Equation (Ck4) is a Fourier cosine expansion of the function
d23(2z)/dz° and its coefficlents lead to

T iw.b sinh b
Ay = n pa T e (©7)

Zumg'coéh TR cosh ppb
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where

.2
T =f7, %a:%(?-zi coB Hyz dz (c8)

To satisfy conditions (C3b) and (C3d) the following relations from
equations (Cl) and (C3) are obtalned:

i -_pm sin ppl Fm'(é) = i - < 50: Frontp¥m 810 p'ml) -
m=1,3

and

Z v, sin vpb Fn'(z) = i: Z FunVphp 8in vpb) -
n=1,3... ' " m=1,3... | \n=1,3...

2

bpFp' (P)| 8in ppz (C10)

where the prime indicates differentiation with respect to either z
or s. Equations (C9) and (Cl0) are Fourier sine expansions of func-
tions TFy'(s) and F,'(z), respectively. The coefficients of these

series with the help of egquations (C6) and (C7) reduce to the following
sets of infinite algebraic equations: ’
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mm “m _
i3 - Y cosh 7, sin o, sin Bm Cal =
7o (an + Tm
. o 2. . . [~)
- fm7,7m 571 o st Bm + Z anBman g8in Bm -
m=1,3... Bm(an2 + 7m2) m=1,3...
2
o)
—8 4+ 8, sinh §.|D for n=1 C11l
an<cosh an n 81 n n J3,5 ( )

and

i
n=1,3... (5n2 B 2)2

cosh &, sin Bm sin an, Dy| =

m

. b7mfy tenh 7.
Z Fon¥mfp 830 oy - Bm £ -
n=1,3... :

m + s8inh 7’m)Cm for m = 1,3,5..- ’ (Clz)

Where ﬁm =Hpl, o, = Ypby B, = Vpl, and 7y, = Bpb. There exist also
two relations given in the text whereby Fpp may be eliminated so that
the two sets of equations contain only the unknowns Cp and D,p. These

two infinlte families of algebraic equations may then be solved
approximately.
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APPENDIX D
PROCEDURE IN NUMERICAL CALCULATIONS

The procedure in the numerical calculation follows here. First,
equations (42), (43), and (44) are made dimensionless by using the
quantities } '

-
- C - D
G = om_ Dy = =n_
Y- Y
— W, — aD
e Rn = 22 0 (01)
_ f
Ty = —
k1 J
Then equations (42), (43), and (4k4) become
VorRpn = I—(mn + Spp + Emen + Envmn for any m,n (D2)
© Y, T % - K
Z C (W - M) = + Y. (& +
m=1,3... m\mm Rmn m=l%.. . m=]§.. mann
Spn +D + S Vion '
g 11148 Yyon =— f n =1 e D
) " Do\Z0 t 2 Tmgl)  for B o135 (®3)
2 Vmnd, N Knn . Sun
D(I _mnmn)__ J ——+—)+
n=]§... A Ran n=1,3... Bun  Rmn

Lp + Em<Mm + > Ton J‘mn) (Dk)
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These functions are tabulated at the end of this section. The physical
parameters which appear can be combined into three groups:

L 2m,2 b
kb h°Eb hEb D
haD s 5.2 (D5)

As a numerical example, assume that

@o
|

o |
]

o
w

(D6)

o
0
)
(@]
'

These values correspond, for example, to a fuselage panel with these
dimensions:

h = 0.03 in.
a = 60 in. (D7)
b =1 =18 in.

The procedure in the numerical example is as follows:

(1) The particular solution J(z) is given by

6 2 .k 6
Jz) = £ 2 _(2_wvk(E oz _ 4. 2
14 30 2 &2 3ot

(2) The Fourler coefficients f;; are:

11 kev-1) l-+l-.v2)+
(2-v) By (2-Wv) g3 2-vp5

£, = -2k(2 - v)1 sin By
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(3) The Fourier coefficients Ky, are:

2 2
Dblu/\ u/\ d J( ) - a7 f ki cos FpZ cos Vs ds dz
-b dz2

Kin

_ 2x sin ay sin By (52_20_2) BN A
Da aan 7'2 ﬁm2
48a2) + V.l
12 Bmh

(4) The functions as defined by equations (D2), (D3), and (DL4) are
tabulated and summed where required. Values of these functions are
given in table II. '

(5) The two families of algebraic equations are then set up for a
finite number of unknown coefficients Dy and Cp neglecting all coef-

ficients beyond a certain suffix. (In the numerical example s total of
8ix coefficients was used.) These equations are then solved by Crout's
method. The results are given in table I.

The functions used in the numerical example are defined as follows:

2 A2 mEet  Ta
o o
kb*/haD

Ry =

Ky = KynaD/ic

EEEQH gin ap
. Smn___._ .2 .2 . -
(In +7m
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_ 47m2°’nﬁm cosh 7, sin a,

biiie} 2
(“nz + 7m2)
up 38 2
= m -n
an = " 5 cosh Gn sin Bm
(5n2 + By )
iy 3o .
Wyn = 2maﬂezasin Bm cosh 7, sin o,
(“n t Tn )
E-E‘mym sin o, sin Bm
cLﬂz + 71112
200 2 3
Ymn=hgb Tm n 5 sin fy
k1<a (7m2 + Orn2)
5.3
7 = -|—2 _— + 5 2 ginh &
n (cosh &y = ° n)
4p 25,3
Iin = zﬁm rl2 S sin a, sin Bm cosh &,
(Sn + By )

_ b2m2 Yoy sin ay

k1% (7m2 + C‘na)2

d,

A
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TABLE T

RESULTS OF NUMERICAL EXAMPLE

(a) Deflection coefficients and values of
moments at center line

NACA TN 2782

Eﬁ@er gign for campression and lower sign for tension
when two signs are presenf]

z/1 Me(l)bE/Dh w1y s/b Mz(l)be/Dh
0 F2.4191 £3.00997 0 25,432
.2 +10.374 +2,6122 .2 F17.892
5 +30. 767 +3.4933 5 +3.6157
.8 71,944 +3.85909 .8 +114,240
1.0 0 0 1.0 0
(b) Values of unknowns for different
approximations of algebraic equations
Number of unknowns
2 L 6
Dy -60. 38k -52,232 ~51, 46k
D3 | ==mmee-- ~. 00265 -. 005040
55 ------------------ . 000100
C1 -1.6976 -1.7091L4 -1. 7547
63 -------- 049589 . 049369
S T ~.000300
1)/
Ef( )/f_:.l center 2.993h 3.00997
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TABLE II

VALUES OF COEFFICIENTS OF ALGEBRAIC EQUATIONS

T
Vo = Y 322
n 1 3 5
n
1 1.43331 -4, 4314 1306.93
3 -1.16204 24l 1042 -T7550. 46
5 .5TH6T -197.423 989L. 78
I vanmn
m Bon
m
n 1 3 5
1 0.0013700 -0.0035L 0.00368
3 -13.8618 5.19863 -6.13128
5 1327.299 2520.25 148k.91
- \j
| et | Teip | Iw
1 -36.7113 6.648kh2 0.56935
3 11.570k 290. 41846 .05352
5 -5.36824 7588.30616 -.09273
Em.n"'smn) Trn
m I, | =1 g~ —mn
> sl >
1 ~T7.99246 3. 32264
3 55. 24575 118.67377
5 -25.21255 317h.27h
m I..m M.m
1 1.29746 -7.21918
3 AT)T -1237.68
5 -.26009 -T9439.15
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"-y

AT 8 = CONSTANT PLANE

Figure 1l.- Coordinate system.
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Figure 2.- Sign convention of resultant forces and moments.
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Figure 3.~ Doubly curved plate loaded in compression.



72

NACA TN 2782 : e}

(z/1), (s/b}
0
~N
o | N
\
. \
, ] M b2/ph
’ ] AT z=0
./~ COMPRESSION
6 4
z/1

s |/

/

/ M, 2
s [ | [ Mg b%/Dn AT ax0

' COMPRESSION

3|
2 \\

\
i
o \ A

L 3 1 T T 1
-40-20 O 20 40 60 80 100120
f(z), MERIDIAN (Mg b%Dh) (M5 b%/Dh)
: “}n
wepw! T a4 s 1 soue
e W' MEASURED NORMAL TO MERIDIAN AT s20

h

Figure 4.- Deflection normal to shell surface and moment distribution
at center lines. :
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